Identification of patterns of neuronal connectivity--partial spectra, partial coherence, and neuronal interactions.
نویسندگان
چکیده
The cross-correlation histogram has provided the primary tool for inferring the structure of common inputs to pairs of neurones. While this technique has produced useful results it not clear how it may be extended to complex networks. In this report we introduce a linear model for point process systems. The finite Fourier transform of this model leads to a regression type analysis of the relations between spike trains. An advantage of this approach is that the full range of techniques for multivariate regression analyses becomes available for spike train analysis. The two main parameters used for the identification of neural networks are the coherence and partial coherences. The coherence defines a bounded measure of association between two spike trains and plays the role of a squared correlation coefficient defined at each frequency lambda. The partial coherences, analogous to the partial correlations of multiple regression analysis, allow an assessment of how any number of putative input processes may influence the relation between any two output processes. In many cases analytic solutions may be found for coherences and partial coherences for simple neural networks, and in combination with simulations may be used to test hypotheses concerning proposed networks inferred from spike train analyses.
منابع مشابه
Stress and Perception of Emotional Stimuli: Long-term Stress Rewiring the Brain
Introduction: Long-term stressful situations can drastically influence one’s mental life. However, the effect of mental stress on recognition of emotional stimuli needs to be explored. In this study, recognition of emotional stimuli in a stressful situation was investigated. Four emotional conditions, including positive and negative states in both low and high levels of arousal were analy...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملDepth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کاملبررسی الکتروانسفالوگرام شبکه موثر مغز انسان در حین گوش دادن به موسیقی به منظور تشخیص احساسات
In the current research brain effective networks related to happy and sad emotions are studied during listening to music. Connectivity patterns among different EEG channels were extracted using multivariate autoregressive modeling and partial directed coherence while participants listened to musical excerpts. Both classical and Iranian musical selections were used as stimulus. Participants’ se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 83 1 شماره
صفحات -
تاریخ انتشار 1998